A Computational Approach to the Graceful Tree Conjecture

نویسنده

  • Wenjie Fang
چکیده

Graceful tree conjecture is a well-known open problem in graph theory. Here we present a computational approach to this conjecture. An algorithm for finding graceful labelling for trees is proposed. With this algorithm, we show that every tree with at most 35 vertices allows a graceful labelling, hence we verify that the graceful tree conjecture is correct for trees with at most 35 vertices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graceful Tree Conjecture for Infinite Trees

One of the most famous open problems in graph theory is the Graceful Tree Conjecture, which states that every finite tree has a graceful labeling. In this paper, we define graceful labelings for countably infinite graphs, and state and verify a Graceful Tree Conjecture for countably infinite trees.

متن کامل

Embedding an Arbitrary Tree in a Graceful Tree

A function f is called a graceful labeling of a graph G with m edges if f is an injective function from V (G) to {0, 1, 2, · · · ,m} such that when every edge uv is assigned the edge label |f(u)− f(v)|, then the resulting edge labels are distinct. A graph which admits a graceful labeling is called a graceful graph. The popular Graceful Tree Conjecture states that every tree is graceful. The Gra...

متن کامل

A complete proof of The Graceful Tree Conjecture using the concept of Edge Degree

The Graceful Tree Conjecture claims that every finite simple tree of order n can be vertex labeled with integers {1, 2, ...n} so that the absolute values of the differences of the vertex labels of the end-vertices of edges are all distinct. That is, a graceful labeling of a tree is a vertex labeling f , a bijection f : V (Tn) −→ {1, 2, ...n}, that induces an edge labeling g(uv) = |f(u)− f(v)| t...

متن کامل

Modular Edge-Graceful Trees

Ryan Jones, Western Michigan University We introduce a modular edge-graceful labeling of a graph a dual concept to the common graceful labeling. A 1991 conjecture known as the Modular Edge-Graceful Tree Conjecture states that every tree of order n where n 6≡ 2 (mod 4) is modular edge-graceful. We show that this conjecture is true. More general results and questions on this topic are presented.

متن کامل

Towards the Graceful Tree Conjecture: A Survey

A graceful labelling of an undirected graph G with n edges is a one-to-one function from the set of vertices of G to the set {0, 1, 2, . . . , n} such that the induced edge labels are all distinct. An induced edge label is the absolute value of the difference between the two end-vertex labels. The Graceful Tree Conjecture states that all trees have a graceful labelling. In this survey we presen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1003.3045  شماره 

صفحات  -

تاریخ انتشار 2010